Contact Sports and Skin Infections

6 02 2012

(Welcome to guest blogger Rebecca Kreston, MSPH and thanks, Rebecca, for sharing this post from your blog: bodyhorrors!)

In honor of one of the most lucrative American events that happened just yesterday, I thought I’d explore sports and infectious diseases. Specifically, contact sports and skin infections!

Since starting this blog, I’ve gathered that readers just love reading about transmissible skin infections, so what could be better than watching the Super Bowl and knowing just exactly what kind of diseases could possibly be smeared between the players of the Patriots and Giants?

There is a glut of infectious diseases that one can acquire from dabbling in combat or contact sports such as American or Aussie-style football, rugby, wrestling, and sumo. In fact, skin infections are the most common injury associated with all sports (1). All that body bashing and face-to-face smearing in contact sports does wonders for spreading skin or cutaneous infections. A number of these ailments are common to us non-athletic mortals—athlete’s foot, jock rash and ringworm (or tinea corporis). Two diseases in particular, with the marvelous potential to initiate larger epidemics within and beyond the locker room, form the focus of this article.

Herpes gladiatorum is a wonderfully evocative name used to describe an athlete’s infection with herpes simplex virus 1 (HVS-1), a terribly contagious virus that many have the misfortune of being acquainted with; it’s estimated that 65% of people will become infected with the virus by the time they reach their 40s (2). Symptoms can include painful, blistery cold sores on the face and neck, along with a sore throat, infected lymph nodes and malaise.

It’s a tricky little bugger of a virus. It can remain dormant, hiding away in nerve cells known as sensory ganglia, only to spring out on one’s face or genitals during periods of physical or emotional stress or, say, when you’re sunbathing in tropical locales on vacation. It has an uncanny sense of knowing when to erupt at the most inappropriate of times, though I’ve been unable to track down any research examining the molecular basis of how it goes about conducting this remarkable mechanism.

Most people rightfully assume that HSV-1 infection is a rather personal, intimate matter: we hear about transmission between a mother and her child, between romancing couples and so on. This makes sense considering that it’s spread by respiratory droplets or direct contact with infected lesions; you’ve really got to get up close and personal in someone’s face if you want to get a sense of what HSV-1 infection feels like (2). But given social situations with a generous amount of skin-to-skin contact with many individuals—sports, for instance—the virus will happily engage in a bit of unplanned host-hopping. As such, it has a frustrating tendency to erupt into outbreaks in sports team and during competitions.

Many athletes may sport micro-abrasions and skin breaks stemming from turf burns, powerful body-to-body collisions, facial stubble or beard burn, and shaving. Depending upon the level of protective clothing and gear, these athletes can experience substantial exposure with their opponent’s infected HSV-1 lesions, not to mention the respiratory droplets, spit and mucus that may transmit other types of infections. Charming! Among teammates, a grab-bag of infections can also be spread by sharing towels, water bottles, clothing, equipment, and hygiene and cosmetic products.

HSV-1 is considered to be particularly endemic in rugby players due to the style of the sport and the lack of protective gear (3). Its rampant presence in rugby leagues has earned it the moniker “herpes rugbiorum” or “scrum pox” (“scrum strep”, caused by the bacterium Streptococcus pyogenes, can also plague rugby players).

In rugby, the “scrum” is a type of huddle maneuver used to return the ball into play. It is a sensational way to spread HSV-1: players in the forward position interlock their heads with their opponents in facing rows before the ball is launched between them. These forwards are the most likely of their teammates to contract scrum pox due to their prominent role in scrums and the increased prospect of serious face-to-face contact. The fact that rugby players do not use protective gear, including helmets, exposes a greater part of their body to physical contact and further increases their risk.

HSV-1 regularly rears its ulcerous face on wrestlers as well. A research group checking serum samples from wrestlers to determine previous HSV 1 exposure found that 29.8% of college wrestlers had reported previous HSV infection (4).

The level of intimacy required in grappling almost makes it inevitable that something is going to be transmitted between two athletes, whether that be sweat, saliva or HSV-1. Indeed, in a 1989 outbreak in high-school wrestling camp for boys, 34% of participants were diagnosed with HSV-1 (5). Lesions commonly appeared on regions of the body most likely to encounter direct skin-to-skin contact with their opponents – 73% on the head, 42% on the extremities and 28% on the trunk of the body.

How do you tell if a wrestler is right or left-handed? Check which side of their face, head, neck and arms has the greatest amount of lesions. Athletes will tend to prominently use the most powerful sides of their body, regardless of which sport, and it will be this side that can receive the greatest amount of skin-to-skin contact with opponents.

Getting a touch of HSV-1 and sharing it with your teammates may be the least of an athlete’s problems. In 2003, a ghastly outbreak of methicillin-resistant Staphylococcus aureus (MRSA) emerged during a college football camp in Connecticut (6). Ten players were infected, of whom two required hospitalization. The infection was discovered to have spread due to the combination of body shaving and turf burns from the artificial grass. Infections were most commonly located at the elbow, thigh, hip, chin, forearm and knee, parts of the body most likely to incur abrasions on the turf. Those players with turf burns had a seven-fold risk of acquiring MRSA infection than those who emerged from scrimmage and active play unscathed (6). Cornerbacks and wide receivers were particularly susceptible due to their frequent body contact during drills and scrimmage play.

A quick browse through the research literature pulls up dozens of MRSA outbreaks like this. In 2002, two college football players in Los Angeles were hospitalized due to MRSA infection (7). A one-year surveillance of a football team at an unnamed major university in the southeastern United States found that 19% of the players showed evidence of nasal colonization of the bacteria at the end of the football season; though the high prevalence of MRSA among these men did not yield any active skin and soft tissue infections, it goes to show how endemic of a problem this really is (8). In 2007, six football players on a Brooklyn high school football team showed evidence of MRSA skin and soft tissue infection; the players had just recently returned from a preseason training camp (9). The infections were serious enough that they generated abscesses requiring surgical incision and drainage.

MRSA colonization of football players is apparently becoming so commonplace that some researchers have suggested using them as human sentinels for public health surveillance of outbreaks within the surrounding community (10). It is regrettably becoming a rather conventional type of emerging infection in athletes.

These infections aren’t just unseemly looking but can be disfiguring, have long-lasting effects within the body and can temporarily disqualify an athlete from practice and competition to prevent localized outbreaks. Hell, some of them can kill ya! These outbreaks can ruin seasons for the team while for salaried athletes, these kinds of infections have serious economic, professional and personal repercussions. Medical professionals recommend that players abstain from play until they’ve started antiviral medications or antibiotics, they are free of systemic symptoms – fever, malaise and lymph node swelling – and until any moist lesions have subsided. Seems reasonable, no?

Infectious diseases are always context specific and spread through particular practices. In the case of contact sports, there are several variables at play that help to spread some nasty infections. While there isn’t a lot we can do about changing how a sport is played (or can we?), coaches and referees can keep an eye out for athletes who seem ill or are showing visible evidence of infection. Fighting against poor hygiene practices and ensuring that wounds are cleaned and dressed immediately can also keep these kinds of sticky situations in line. Game on!

RESOURCES
A mission statement and guidelines on how to deal with herpes gladiatorum from the Sports Medicine Advisory Committee at the National Federation of State High School Associations.
Wrestlers filed a “herpes lawsuit” in 2008 against their coach and trainer holding them responsible for a localized HSV-1 outbreak.
In 2008, researchers discovered a unique herpes strain that only affects sumo wrestlers.

REFERENCES
1. BB Adams. (2010) Skin Infections in Athletes. Expert Rev Dermatol. 5(5): 567-577
2. R Sharma et al. (2011) Herpes Simplex in Emergency Medicine. Accessed online on Feb 2, 2012. Link.
3. BB Adams. (2000) Transmission of cutaneous infections in athletes. Br J Sports Med. 34(6): 413–414
4. B.J. Anderson (2008) Managing Herpes Gladiatorum Outbreaks in Competitive Wrestling: The 2007 Minnesota Experience. Curr Sports Med Rep. 7(6): 323-7
5. Belongia EA, Goodman JL, Holland EJ, et al. (1991) An outbreak of herpes gladiatorum at a high-school wrestling camp. N Engl J Med. 325(13): 906-10
6. EM Begier et al. (2004) A High-Morbidity Outbreak of Methicillin-Resistant Staphylococcus aureus among Players on a College Football Team, Facilitated by Cosmetic Body Shaving and Turf Burns. Clin Infect Dis. 39(10): 1446-1453
7. DM Nguyen et al. (2005) Recurring Methicillin-resistant Staphylococcus aureus Infections in a Football Team Emerg Infect Dis. 11(4): 526-32
8. CB Creech (2010) One-year surveillance of methicillin-resistant Staphylococcus aureus nasal colonization and skin and soft tissue infections in collegiate athletes. Arch Pediatr Adolesc Med. 164(7): 615-20
9. Centers for Disease Control & Prevention (CDC). (2009) Methicillin-resistant Staphylococcus aureus among players on a high school football team–New York City, 2007. MMWR Morb Mortal Wkly Rep. 58(3): 52-5
10. B Barr, M Felkner & PM Diamond. (2006) High school athletic departments as sentinel surveillance sites for community-associated methicillin-resistant staphylococcal infections. Tex Med. 102(4):56-61





What Comes With a Kiss?

14 02 2011

A kiss can be a greeting between friends, or it can mean so much more. We enjoy it either way, don’t we?

Health-wise, locking lips can be both a benefit and a burden.

Scientists don’t completely understand why we kiss, but humans are not the only lip smackers on the planet. Animals, including apes, also practice kissing-like behaviors.

The Good Kiss

We get a serious physical response from a good kiss. Kisses cause a brain fireworks show. Sensory neurons from our lips send signals to our brain and body, kicking off sensory sparks, intense emotions, and physical reactions.

Getting to first base can be a huge stress reliever, and holding hands and kissing has been known to lower blood pressure as well as boost our immune systems.

When we get a passionate kiss, our brain oozes a bit of dopamine in the ventral tegmental part of the brain, which is the same region that is tickled by addictive drugs like cocaine. Our body sure does like getting love pecks.

Swapping spit can also help keep your teeth pearly white. Saliva acts as a natural lubricant, slipping under plaque and washing it away. It can even protect teeth from decay by neutralizing harmful acids.

Finally, a good make-out session can benefit your heart. We burn 12 calories for every five seconds of vigorous kissing .

The Bad Kiss

While Scottish writer Thomas Carlyle said, “If you are ever in doubt as to whether to kiss a pretty girl, always give her the benefit of the doubt,” there are some good reasons to put a pause in your pucker.

Kisses can spread germs and infections. One milliliter of saliva contains about 100,000,000 bacteria. And, according to the Academy of General Dentistry (AGD), with just one kiss, couples can share more than 500 different types of disease-causing bacteria and viruses.

Not exactly romantic, huh?

Cold sores are caused by the herpes virus and spread by skin-on-skin contact. Flu and cold viruses can be shared lover-to-lover through necking. Also, mononucleosis, heralded as the kissing disease “mono” is easily spread through a good French kiss, as well as by sharing food, a cup, utensils or straws with an infected person.

With a sloppy kiss, we pass on the bacteria that cause cavities. This can also happen when a parent sucks on a child’s pacifier or eating utensil with their mouth.

We don’t need to get worked up about this, but it’s good to know that along with fireworks can come cavities.

As your thoughts turn to love on this Valentine’s Day, consider Shakespeare’s words: “I can express no kinder sign of love, than this kind kiss.”

Smooch on, dear readers, smooch on!





Canker Sores

3 01 2011

Dr. Mary Beth, PKIDs’ advice nurse, explains the difference between canker sores and oral herpes, and what you can do to relieve the pain.

Listen now!

Right-click here to download podcast (5min/2.5mb)





Does Herpes Ever Sleep?

6 12 2010

A Time Magazine cover story from August 2, 1982, described herpes as “Today’s Scarlet Letter.” Back then, both treatment and diagnostic testing for herpes were cumbersome and unreliable.

In the ’70s and ’80s, herpes support groups were established, helping to bring the infection out of the closet.

With the advent of Acyclovir and other antivirals, as well as the (mostly) suppressed painful outbreaks, the lives of many herpes sufferers were transformed. Yet gaps in both the understanding of the virus as well as treatment persist.

Between 1978 and 1990, the prevalence of genital herpes grew by 32%. Currently, estimates are that 1 in 4 American adults over the age of 12 have genital herpes, though most carriers are unaware they’re infected.

Until recently, it’s been accepted that the herpes virus sets up “permanent residence in the ganglia.”

In other words, the virus is believed to be an infection characterized by periodic recurrences followed by inactivity.

A recent study challenges this assumption, finding that the infection “may occur on both sides of the midline and in more ganglia than previously thought.” If these results hold up to further validation, it will show chronic herpes infection to be continuously active, rather than cyclical. A big difference which could change the lives of those infected and inspire new prevention methods.

Currently, the best way to prevent herpes remains sexual abstinence or a long term-monogamous relationship with a partner who’s been tested and is not HSV-2+.





Herpes – Even If You Can’t See It

8 02 2010

Genital herpes is a sexually transmitted disease (STD) most often caused by the herpes simplex virus type 2 (HSV-2).

About 45 million people in the U.S. over the age of 11have been infected. When a person becomes infected with the virus, it causes lesions in the genital area. Once a person is infected with HSV-2, there’s no way to get rid of it. The body carries the virus forever, although there may not always be symptoms.

Scientists used to believe that the life cycle of the virus in the body moved through stages of activity and inactivity. When the virus was active, it caused genital lesions. When the lesions went away, the virus was considered inactive.

Newer evidence suggests the virus may not ever be completely inactive. Now scientists believe that the virus continuously sheds small amounts of itself to the genital area along the nerves from the spinal column, even when lesions are not present.

This information suggests that people may be more contagious during “inactive” times than previously thought. Use of condoms can help prevent transmission, but it’s still possible to become infected when using a condom. Even though there are treatments available that help reduce transmission, there’s nothing that provides 100% protection against infection.

Herpes can be painful, and it can be life-threatening to newborns. Practice safe sex to give yourself the best chance to avoid this and other STDs.

Share